Worksheet 5-5: Rates of Change/Growth

How do we identify linear, quadratic or exponential relations?

1. Classify by Equation:

- is still linear © Linear: x is a first-degree variable (Exponent is 1).
- ② Quadratic: x is a second-degree variable (Exponent is 2).
- \odot Exponential: x itself is the exponent.

2. Classify by Graph:

- Linear: the graph is a straight line.
- Quadratic: the graph is a parabola (U-shape).
- © Exponential: the graph is an exponential curve (J-shaped).

3. Classify by Finite Differences:

- Linear: first differences are constant.
- ② Quadratic: first differences increase by a constant value (adding). Second differences are constant.
- © Exponential: first differences increase by a constant factor (multiplying), a common ratio.

Check for Understanding:

1. Without graphing, classify each of the following as linear, quadratic, or exponential growth.

(a)
$$3x - 4y = 12$$

Linear

Quadratic

Exponential

(b)
$$v = 2x^2 + 3$$

Linear

Quadratic

Exponential

(c)
$$y = \left(\frac{1}{5}\right)^x$$

Linear

Quadratic

Exponential

(d)
$$y = 3(1.05)^x$$

Linear

Quadratic

Exponential

2. Examine each graph and classify as linear, quadratic, or exponential growth.

(a)

Linear

Quadratic

Exponential

(b)

Linear

Quadratic

Exponential

(c)

Linear

Quadratic

Exponential

Investigation:

1. Graph y = 2x. Linear

х	y	=2x	First Difference
-3	2(-3)	= -6	4-(-6)= 2
-2	2(-2)=-4	-2-(-4)= 2
-1	2(-1) = -2	0-(-1)= 2
0	20	1=0	2-0-2
1	2(1))=2	1 2 7 2
2	2(2)) = 4	1-1-7
3	2(3)	1 = 6	0 T - 4
			T

2. Graph $y = 2x^2$.

3. Graph $y = 2^x$. $7^3 = \frac{1}{23} = \frac{1}{23}$

	o	~
х	$y=2^x$	Difference Ratio
-3	2-3= す	+:1-0
-2	2-2 = 4	4 18 2
-1	2-1 - 1	514-2
0	20=	172 - 2
1	2 = 2	271-2
2	22 = 4	0-4 = 2

4 ÷ 8 = 1 ÷ 4 ÷ (1 ÷ 8)

4. Graph $y = \left(\frac{1}{2}\right)^x$. $\left(\frac{1}{2}\right)^3 = \frac{1}{(\frac{1}{2})^3} = 2^3$

х	$y = \left(\frac{1}{2}\right)^x$			Difference
-3	(字)	r3 =:	ν ⁵ =8	
-2	15	72=2	2=4	•
-1	12	1-1=2	1=2	
0	12	10 =		
1	13	1 = -	2	
2	12	2 =	1	
3	11.	3=	2	

