
Read the front and complete the back in 5 minutes!

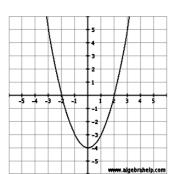
Summary of Transformations in Quadratic Relations

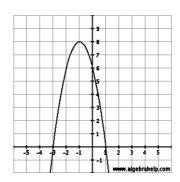
For any quadratic relation of the form $y = a(x - h)^2 + k$:

- The value of a determines the orientation (upward or downward) and shape (stretch or compression) of the parabola relative to the graph of $y = x^2$.
- \rightarrow If a > 0 (a is greater than 0), the parabola opens upward.
- \rightarrow If a < 0 (a is less than 0), the parabola opens downward, and is a reflection of $y = x^2$ in the x-axis.
- \rightarrow If -1 < a < 1 (a is between -1 and 1), the parabola is vertically compressed relative to the graph of $y = x^2$.
- → If a > 1 or a < -1 (a is greater than 1 or less than -1), the parabola is vertically stretched relative to the graph of $y = x^2$.
- The value of k determines the **vertical position** of the parabola.
- \rightarrow If k > 0 (k is greater than 0), the parabola is vertically translated upward by k units relative to the graph of $y = x^2$, and the vertex of the parabola is k units above the x-axis.
- \rightarrow If k < 0 (k is less than 0), the parabola is vertically translated downward by k units relative to the graph of $y = x^2$, and the vertex of the parabola is k units below x-axis.
- The value of h determines the horizontal position of the parabola.
- \rightarrow If h > 0 (h is greater than 0), the vertex of the parabola is horizontally translated to the right of the y-axis by h units, relative to the graph of $y = x^2$.
- \rightarrow If h < 0 (h is less than 0), the vertex of the parabola is horizontally translated to the left of the y-axis by h units, relative to the graph of $y = x^2$.
- The coordinates of the vertex of the parabola are (h, k).

The graph is reflected in the x-axis, stretched vertically by a factor of 33shifted horizontally to the right by 2 units, and shifted vertically up by 9 units.

(b) write the coordinates of the vertex.

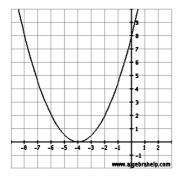

(c) write the equation of the axis of symmetry.

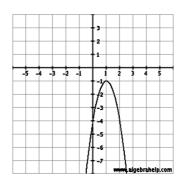

Worksheet 4-8: Interpret Graphs of Quadratic Relations

Besides the vertex, minimum or maximum y-value, and the axis of symmetry, x- and y-intercepts of a quadratic relation are also important information when interpreting a quadratic relation.

x-intercept is the x-coordinate of the point where the parabola crosses or touches the x-axis. y-intercept is the y-coordinate of the point where the parabola crosses or touches the y-axis.

1. State the x- and y-intercepts of each quadratic relation.




y-intercept is -4.

x-intercepts are -2 and 2. x-intercepts are -3 d1. y-intercept is -4. y-intercept is 6

(c)

(d)

x-intercept is -4. y-intercept is 8.

There is no x-intercept. y-intercept is -4.

To find the x- and y-intercepts of a quadratic relation algebraically.

- \rightarrow substitute x = 0 into the quadratic equation to find the y-intercept.
- \rightarrow substitute y = 0 into the quadratic equation to find the x-intercept(s).

2. Find the y-intercept of each relation. Sub $\chi = 0$

(a)
$$y = -3(x+2)^2 - 9$$

(a)
$$y = -3(x+2)^2 - 9$$

 $y = -3(0+2)^2 - 9$
 $= -21$
 $y - \text{intercept} = -21$
(c) $y = 2(x-3)^2 + 12$
 $y = 2(0-3)^2 + 12$
 $= 2(-3)^2 + 12$
 $= 2(9) + 12$
 $= 18 + 12$
 $= 30$
 $y - \text{intercept} = 30$

(b)
$$y = 0.1x^2 + 0.4x + 1.8$$

$$y = 0.1(0)^{2} + 0.4(0) + 1.8$$

$$y = 1.8$$

$$y = .intercept = 1.8$$

$$y(0) = -4x^{2} - 8x - 9$$

$$y = -4(0)^{2} - 8(0) - 9$$

= -9
y-intercept = -9

3. Find the x-intercept of each relation.

(a)
$$y = 2(x-3)^2 - 8$$
 Vert $= (3, -8)$

$$0 = 2(x-3)^{2} - 8$$

$$\frac{8}{2} = \cancel{2}(x-3)^{2}$$

$$\cancel{2}$$

$$\cancel{2}$$

(b)
$$y = x^2 + x - 42$$

$$\frac{1}{\sqrt{4}} = x - 3$$

$$\frac{2 = x - \beta \text{ or } -2 = x - \beta}{+3 + \beta} + \frac{+3 + \beta}{5 = x \text{ or } 1 = x}$$

$$0 = (x+7)(x-6) = \frac{x}{+1}$$

$$x+7=0 \text{ or } x-6=0$$

$$x=-7 \text{ or } x=6$$

(c)
$$y = -3(x+5)^2 + 27$$

$$0 = -3(x+5)^{2}+27$$

$$-27 -27$$

$$-3$$
 -3 $a = (x+5)^2$

$$q = (x+y)$$

$$\frac{-5}{3} - \frac{5}{3} - \frac{5}{3} - \frac{5}{3} - \frac{5}{3} = \frac{5}{3}$$

(d)
$$y = 2x^2 - 6x - 36$$
 GCF 2

$$0 = 2x^{2} - 6x - 36$$

$$0 = 2(x^{2} - 3x - 18)$$

$$0 = (x+3)(x-6) \frac{x^{2} - 18}{x - 3}$$

4. A construction worker drops his wrench. Its fall is modelled by the relation $h = -4.9t^2 + 342$, where h is the height above the ground, in metres, and t is the time after the wrench was

Find h when t=0 -> find the y-intercept $h = -4.9t^2 + 342$

$$=-4.9(0)^{2}+342$$

= 0+342

n= 342

: The wrench was 342 m above When it was dropped.

(b) How far has the wrench fallen after 5 seconds?

Find hwhen t=5.

$$h = -4.9(5)^2 + 342$$

But 219.5 m is where it was, how far had it been dropped is the distance from t=0 to t=5 =>

.. The wrench has fallen 122.5m after 5 seconds.

(c) When will the wrench hit the ground?

Find t when $h=0 \rightarrow x$ -intercept (reject negative h value)

$$y = -4.9t^2 + 342$$
 $0 = -4.9t^2 + 342$

+4.9t² +4.9t²

$$\frac{4.9t^2}{4.9} = \frac{342}{4.9}$$

$$t^2 = \frac{342}{4.9}$$

$$t = \pm \sqrt{\frac{342}{4.9}}$$

... The wrench will hit the ground after 8.35 s.

5. A football player kicks a football held 0.5 m above the ground. The football reaches a maximum height of 30 m at a horizontal distance of 48 m from the player.

(a) Determine a quadratic relation that models the path of the football.

Vertex(18,30) y-intercept at
$$(0,0.5)$$

 $a=? \rightarrow Snb$ into $y=a(x-h)^2+k$
 $x=0$, $y=0.5$, $h=18$, $k=30$
 $0.5=a(0-18)^2+30$
 $0.5=a(-18)^2+30$
 $0.5=324a+30$
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -3

(b) At what horizontal distance from the player does the football hit the ground?

$$\uparrow \\
\chi = ? \\
h = 0$$

Find x when $h=0 \rightarrow x$ -intercept $y=-0.09(x-18)^2+30$

$$0 = -0.09 (x-18)^{2} + 30$$

$$-30 -30$$

$$\frac{-30}{-0.09} = -\frac{0.09 (\chi - 18)^2}{-0.09}$$

$$\frac{30}{0.09} = \left(\times -18 \right)^2$$

$$\frac{1}{2}\sqrt{\frac{30}{0.09}} = x-18$$

.. The horizontal distance is 36.26 m when the football hits the ground.