$$y = x^{2} + k$$

$$y = ax^{2} + k$$

Investigation 1: $y = x^2 + k$, when k is positive

(a) Graph $y = x^2$ and $y = x^2 + 1$ on the same axes.

Compare the two parabolas,

- (i) how are they similar?

- same shape
 same opening direction
 same axis of symmetry
- (ii) how are they different?
- different vertices
 different
 minimum values.
- (b) Graph $y = x^2$ and $y = x^2 + 3$ on the same axes.

Compare the two parabolas,

- (i) how are they similar?

- same shape
 same opening direction
 different vertices
 same axis of symmetry
 minimum values.
- (ii) how are they different?

$$y = \chi^2 + 3$$
 $y = (0, 0+3)$

$$y = x^2 + 1$$
 $(0,0+1)$

$$g = \chi^2 + 5$$
 (0,5) (1,6)

Investigation 2: $y = x^2 + k$, when k is negative

(a) Graph $y = x^2$ and $y = x^2 - 2$ on the same axes.

Compare the two parabolas,

(i) how are they similar?

(ii) how are they different?

- same shape - same opening direction - different vertices - same axis of symmetry - different minimum values.

- (b) Graph $y = x^2$ and $y = x^2 5$ on the same axes.

Compare the two parabolas,

(i) how are they similar?

(ii) how are they different?

- same shape
- same opening direction
- different vertices
- same axis of symmetry
- minimum values.

When k is negative, the graph of the quadratic relation $y = x^2 + k$ can be obtained from the graph of $y = x^2$ by a vertical translation of k units downward, below the x-axis. (i.e. when k < 0, the graph of $y = x^2$ is shifted downward by k units, below the x-axis.) The vertex of $y = x^2 + k$ is at (0, k) and its y-intercept is k.

1. For each of the following parabolas, state the vertex, y-intercept, axis of symmetry and equation for the quadratic relation.

(a)

(b)

Vertex = (0,2) y-intercept = 2

axis of symmetry:

$$y = \chi^2 + 2$$

$$y=x^2-4$$

p. 191

2. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola and the graph of a relation of the form $y = ax^2 + k$ is shown as a solid parabola. For each solid parabola, is k positive or negative? Explain.

p. 191

5. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola. Describe the shape and position of each solid parabola relative to the graph of $y = x^2$ in terms of a and k.

