\qquad
\qquad

Summary of Transformations in Quadratic Relations

For any quadratic relation of the form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$:

- The value of \boldsymbol{a} determines the orientation (upward or downward) and shape (stretch or compression) of the parabola relative to the graph of $y=x^{2}$.
\rightarrow If $\boldsymbol{a}>\mathbf{0}$ (a is greater than 0), the parabola opens upward.
\rightarrow If $\boldsymbol{a}<\mathbf{0}(a$ is less than 0$)$, the parabola opens downward, and is a reflection of $y=x^{2}$ in the x-axis.
\rightarrow If $-\mathbf{1}<\boldsymbol{a}<\mathbf{1}$ (a is between -1 and 1), the parabola is vertically compressed relative to the graph of $y=x^{2}$.
\rightarrow If $\boldsymbol{a}>\mathbf{1}$ or $\boldsymbol{a}<\mathbf{- 1}(a$ is greater than 1 or less than -1$)$, the parabola is vertically stretched relative to the graph of $y=x^{2}$.
- The value of \boldsymbol{k} determines the vertical position of the parabola.
\rightarrow If $\boldsymbol{k}>\mathbf{0}(k$ is greater than 0$)$, the parabola is vertically translated upward by k units relative to the graph of $y=x^{2}$, and the vertex of the parabola is k units above the x-axis.
\rightarrow If $\boldsymbol{k}<\mathbf{0}(k$ is less than 0$)$, the parabola is vertically translated downward by k units relative to the graph of $y=x^{2}$, and the vertex of the parabola is k units below x-axis.
- The value of \boldsymbol{h} determines the horizontal position of the parabola.
\rightarrow If $\boldsymbol{h}>\mathbf{0}$ (h is greater than 0), the vertex of the parabola is horizontally translated to the right of the y-axis by h units, relative to the graph of $y=x^{2}$.
\rightarrow If $\boldsymbol{h}<\mathbf{0}$ (h is less than 0), the vertex of the parabola is horizontally translated to the left of the y axis by h units, relative to the graph of $y=x^{2}$.
- The coordinates of the vertex of the parabola are $(\mathbf{h}, \boldsymbol{k})$.

Name: \qquad
Date: \qquad

For the quadratic function $f(x)=-3(x-2)^{2}+9$:
(a) describe in words the transformation relative to the graph of $f(x)=x^{2}$.
(b) write the coordinates of the vertex.
(c) write the equation of the axis of symmetry.

