Name: _____

Date: ____

Summary of Transformations in Quadratic Relations

For any quadratic relation of the form $y = a(x - h)^2 + k$:

- The value of *a* determines the orientation (upward or downward) and shape (stretch or compression) of the parabola relative to the graph of $y = x^2$.
- \rightarrow If a > 0 (*a* is greater than 0), the parabola opens upward.
- \rightarrow If a < 0 (a is less than 0), the parabola opens downward, and is a reflection of $y = x^2$ in the x-axis.
- → If -1 < a < 1 (*a* is between -1 and 1), the parabola is vertically compressed relative to the graph of $y = x^2$.
- → If a > 1 or a < -1(*a* is greater than 1 or less than -1), the parabola is vertically stretched relative to the graph of $y = x^2$.
- The value of *k* determines the **vertical position** of the parabola.
- → If k > 0 (k is greater than 0), the parabola is vertically translated upward by k units relative to the graph of $y = x^2$, and the vertex of the parabola is k units above the x-axis.
- → If k < 0 (k is less than 0), the parabola is vertically translated downward by k units relative to the graph of $y = x^2$, and the vertex of the parabola is k units below x-axis.
- The value of *h* determines the **horizontal position** of the parabola.
- → If h > 0 (*h* is greater than 0), the vertex of the parabola is horizontally translated to the right of the *y*-axis by *h* units, relative to the graph of $y = x^2$.
- → If h < 0 (*h* is less than 0), the vertex of the parabola is horizontally translated to the left of the *y*-axis by *h* units, relative to the graph of $y = x^2$.
- The coordinates of the **vertex** of the parabola are (*h*, *k*).

For the quadratic function $f(x) = -3(x-2)^2 + 9$:

(a) describe in words the transformation relative to the graph of $f(x) = x^2$.

- (b) write the coordinates of the vertex.
- (c) write the equation of the axis of symmetry.