Name: _____ Date:

1

Practice Test 5: Exponential Relations

PART A: Multiple Choice Questions

Instructions: Circle the English letter of the best answer. Circle one and ONLY one answer.

Knowledge/Thinking:

1. Which of these relations is exponential?

(a) $y = 0.5x$	(b) $y = 3x^2$	(c) $y = 2(x)^3$	(d) $y = 5x^{\overline{2}}$	(e) $y = 3^x$

2. 2^{-4} is:

(a)
$$-8$$
 (b) -2^4 (c) $\frac{1}{16}$ (d) -16 (e) $-\frac{1}{8}$

3.
$$-3.5^{\circ}$$
 is:
(a) -3.5 (b) 3.5 (c) 1 (d) -1 (e) 0

4. Evaluate $2.58^{-1.4}$ to 2 decimal places, the answer is:

(a) 0.26 (b) 0.27 (c) -0.27 (d) 3.61 (e) -3.61

5. $100(2.5)^{\frac{10}{5}}$ is:

(a) 62500 (b) 625 (c) 190735 (d) 1907 (e) 500

6. A certain type of bacteria doubles every 8 hours. A culture begins with 30 000 bacteria. Which of the following formula best models the growth of the bacteria in the culture?

(a) $P = 30000(2)^{x}$ (b) $P = 30000(2)^{8x}$ (c) $P = 30000(8)^{x}$ (d) $P = 30000(2)^{\frac{8}{x}}$ (e) $P = 30000(2)^{\frac{x}{8}}$

7. Carbon-14 is a radioactive element, and its decay can be modelled by the formula $C = \left(\frac{1}{2}\right)^{\frac{n}{5730}}$.

What is the half-life of Carbon-14?

(a) 5730 (b) 0.5 (c) 14 (d) 2865 (e) unknown

8. Which of these relations is exponential?

(a)	x	у	(b)	x	у	(c)	x	у	(d)	x	у
	1	2		2	4		0	32		0	-8
	2	4		4	16		1	8		1	16
	3	6		6	36		2	2		2	-32
	4	8		8	64		3	1		3	64

Name:	 Ducation
-	Practice
Date: _	 Test 5

Part B: Full Solution Questions Instructions: Show all steps for full mark.

Provide answer statements in complete English sentences where applicable.

Knowledge:

1. Write each as a single power with positive exponents, then evaluate as integers or fractions.

(a)
$$\left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^{-4}$$
 [K: 3] (b) $((-3)^2)^{-1}$ [K: 3] (c) $\frac{10^{20} \times 10^{-23}}{10^{-3}}$ [K: 3]

(d)
$$\left(\frac{2}{3}\right)^{-2}$$
 [K: 2] (e) $\frac{4^3 \times 4 \times 4^5}{(4^2)^3}$ [K: 4] (f) $(-5)^{-4} \times (-5)^5 \div (-5)^{-1}$ [K: 3]

2. Classify each as exponential growth, exponential decay, quadratic growth or linear growth. [K: 3]

Name:	 Practice
Date: _	 Test 5

Communication:

3. For
$$y = \left(\frac{1}{2}\right)^x$$
 and $y = 2\left(\frac{1}{2}\right)^x$,

(a) graph both relation on the same axes. [C: 5]

(b) describe the differences and similarities of the two relations. [C: 4]

AChor/MBF3C	Name:	Duration
	Date:	Test 5

4. Which model (linear, quadratic, or exponential) would best describe each situation? Why? [C: 6](a) an airplane slowing down by half of its speed for every minute that elapses

(b) the height of a bottle falling down from the top of a building

(c) the deer population in a national park doubling every year

(d) a marathon runner speeding up by 2 km/h each second

5. Johnny was asked to solve a problem involving an exponential relation. He was given the equation of an exponential relation: $y = 224(1.075)^x$, and ask to find the value of y when x = 10. Describe a situation that can be modelled by this equation and the answer to be determined. [C: 4]

AChor/MBF3C	Name:	D
	Date:	Practice Test 5

Application:

6. The side length of a cube is $\frac{1}{2}$ cm. Write the volume of the cube as a single power, and then evaluate. [A: 2]

- 7. A town's racoon population is growing exponentially. The expected population can be estimated using the relation $P = 1250(1.013)^n$, where P is the population and n is the number of years.
- (a) What is the current racoon population? [A: 1]
- (b) What is the growth factor for the relation? [A: 1]
- (c) What is the yearly growth rate of the racoon population? Write as a percent. [A: 1]
- (d) What is the expected population in 5 years? [A: 2]

(e) How long does it take the racoon population to be doubled? [A: 3]

Name: _	 Practice
Date:	 Test 5

8. The remaining mass of a drug in a person's bloodstream is modelled by $M = 500 \left(\frac{1}{2}\right)^{\frac{1}{2}}$, where M is the remaining mass in milligrams, and t is the time, in hours, that the drug is in the

bloodstream.

- (a) What is the half-life of the drug? [A: 1]
- (b) What was the dosage of the drug? [A: 1]
- (c) What will be the concentration of the drug in the bloodstream after 2 hours? [A: 2]

(d) What will be the concentration of the drug in the bloodstream after 6 hours? [A: 2]

(e) How long does it take for the concentration of the drug in the bloodstream to reduce to 25%? [A: 2]

Thinking:

9. The deer population of a national park was 200 deer 10 years ago. Today, there are 400 deer. Assuming the deer population has experienced exponential growth, write a relation representing the size of the deer population in the park. Use your relation to project the deer population in 25 years. [T: 4]

AChor/MBF3C	Name:	Dreation
	Date:	Test 5

- 10. From 1994 to 2004, average personal incomes grew in Canada according to the relation $I = I_0 (1.041)^n$, where *I* is the resulting income, I_0 is the initial income, and *n* is the number of years of growth.
- (a) If a person's income was \$34 000 in 1994, what would it be in 2004? [T: 2]

(b) If a person's income was \$50 000 in 1996, what would it be in 2003? [T: 3]

(c) What was the average yearly rate of growth from 1994 to 2004? Write as a percent. [T: 1]

11. The amplitude of a pendulum over a 40-s period is shown in the table. Write an exponential relation to model the situation. [T: 4]

Time (s)	0	10	20	30	40
Amplitude (cm)	80.0	40.0	20.0	10.0	5.0

Answers:

Part A: 1. e; 2. c; 3. d; 4. b; 5. b; 6. e; 7. a; 8. d.

Part B:

1. (a)
$$2^2$$
, 4, (b) $\frac{1}{(-3)^2}$, $\frac{1}{9}$, (c) 10^0 , 1, (d) $\left(\frac{3}{2}\right)^2$, $\frac{9}{4}$, (e) 4^3 , 64, (f) $(-5)^2$, 25;

- 2. (a) exponential growth, (b) quadratic growth, (c) exponential decay;
- 3. (b) Both relations have the same shape. Both decrease more rapidly and then more slowly to almost horizontal but never touch the *x*-axis as *x* increases. The two relations have different *y*-intercepts (1 for

$$y = \left(\frac{1}{2}\right)^{x}$$
 and 2 for $y = 2\left(\frac{1}{2}\right)^{x}$;

- 4. (a) exponential, because speed decreases by the same rate over equal time periods,
 - (b) quadratic, because gravity involves quadratics,
 - (c) exponential, because population increases by the same rate over equal time periods,

(d) linear, because distance increases by the same amount over equal time periods;

5. Answer may vary but must have 224 as the initial amount, a growth factor of 1.075 or a growth rate of

7.5%, and 10 as the number of changes. For example, there are currently 224 swans in the Toronto Zoo. If the swan population grows at a rate of 7.5% per year, how many swans will there be after 10 years?

6.
$$\left(\frac{1}{2}\right)^3$$
, $\frac{1}{8}$ cm³;

7. (a) 1250, (b) 1.013, (c) 1.3%, (d) 1333, (e) 54 years;

8. (a) 2 hours, (b) 500 mg, (c) 250 mg, (d) 62.5 mg, (e) 4 hours;

9. (a)
$$P = 200(2)^{\frac{x}{10}}$$
, (b) 2263;

10. (a) \$50 814, (b) \$66 241, (c) 4.1%;

11.
$$y = 80\left(\frac{1}{2}\right)^{\frac{x}{10}}$$
.