\qquad

Practice Test 4: Quadratic Relations

$\mathrm{K}: \ldots$	$\mathrm{A}: \ldots$	$\mathrm{T}: \ldots$	$\mathrm{C}:$

PART A: Multiple Choice Questions

Instructions: Circle the English letter of the best answer.

Circle one and ONLY one answer for each question.

Knowledge/Thinking:

1. Which of these relations is quadratic?
(a) $y=0.5 x-7$
(b) $y=5.8 x+3 x^{2}-9$
(c) $y=2 x^{2}+4 x^{3}$
(d) $3 x+2 y=10$
(e) $y=2^{x}$
2. Which parabola has its vertex 3 units above the x-axis?
(a) $y=3(x-5)^{2}+4$
(b) $y=5(x+4)^{2}-3$
(c) $y=-(x-7)^{2}+3$
(d) $y=0.3(x+3)^{2}-10$
3. Which parabola has its vertex farthest from the y-axis?
(a) $y=20(x-5)^{2}+6$
(b) $y=4(x+2)^{2}-17$
(c) $y=0.5(x-0.8)^{2}+9$
(d) $y=0.1(x-15)^{2}+3$
4. Which parabola is the most vertically stretched?
(a) $y=-5(x+4)^{2}-3$
(b) $y=0.5(x-0.8)^{2}+9$
(c) $y=-0.1(x-15)^{2}+3$
(d) $y=3(x-5)^{2}+4$
5. The parabola represented by the relation $y=-8(x+15)^{2}+12$ has which vertex?
(a) $(-8,15)$
(b) $(-15,-12)$
(c) $(15,12)$
(d) $(12,-15)$
(e) $(-15,12)$
6. Which relation in standard form represents the same parabola as $y=5(x-6)^{2}-20$?
(a) $y=5 x^{2}-6 x-20$
(b) $y=5 x^{2}-12 x+16$
(c) $y=5 x^{2}-60 x+160$
(d) $y=5 x^{2}-12 x+160$
7. Which are the zeros for the quadratic relation $y=4 x^{2}-100$?
(a) $x=0$
(b) $x=2$ and 10
(c) $x=5$ and 10
(d) $x=-5$ and 5
(e) $x=4$ and 5
8. Which is the equation for the parabola shown on the right?
(a) $y=-0.5(x-2)^{2}+8$
(b) $y=-0.5(x+8)^{2}-2$
(c) $y=-0.5(x+2)^{2}+8$
(d) $y=2(x-2)^{2}+8$
(e) $y=-2(x+2)^{2}+8$

Name: \qquad

Part B: Full Solution Questions

Instructions: Show all steps for full mark.
Provide answer statements in complete English sentences where applicable.

Knowledge:

1. For each of the following relations, use finite differences to determine if the relation is linear, quadratic or neither. Explain your reasoning. [K: 8]
(a)

x	y
1	2
2	-4
3	-10
4	-16

(b)

x	y
2	50
4	32
6	18
8	8

2. For each of the following quadratic relations,
(a) state the coordinates of the vertex.
(b) state the direction of opening.
(c) state the equation for the axis of symmetry.
(i) $y=3(x-5)^{2}-8 \quad[\mathrm{~K}: 3]$
(ii) $y=-\frac{1}{4}(x+2)^{2}+7$
[K: 3]
3. State the x - and y-intercepts of each quadratic relation. [K: 3]

Name: \qquad
Date: Test 4
4. Each relation is in vertex form. Write each relation in standard form, and in intercept form.
(a) $y=2(x+1)^{2}-18$
[K: 6]
(b) $y=-0.5(x+8)^{2}+18 \quad[\mathrm{~K}: 6]$
5. Find the x-intercept and y-intercept of each relation.
(a) $y=4(x-8)^{2}-16$
[K: 6]
(b) $y=3 x^{2}-33 x-36$
[K: 3]
6. Match the following graphs to their corresponding equations. Choose only three. [K: 3]
$y=-(x+2)^{2}+4$
$y=4 x^{2}+4$
$y=-\frac{1}{4} x^{2}$
$y=-4 x^{2}+4$
$y=-\frac{1}{4} x^{2}+4$

\qquad

Communication:

7. For each quadratic relation,
(a) describe the transformation of the parabola as compared to the graph of $y=x^{2}$.
(b) sketch the graph of the parabola.
(i) $y=\frac{1}{2}(x-4)^{2}-6$
[C: 8]

(ii) $y=-3(x+5)^{2}+9$
[C: 8]

Name: \qquad
Date:
8. Explain whether each relation has more than one zero, only one zero, or no zero. [C: 4]
(a) $y=-8 x^{2}+14$
(b) $y=-(x+6)^{2}$

Application:

9. A football player kicks a ball into the air. The ball's path can be modelled by the relation $h=-0.04(d-19)^{2}+14.44$, where h is the ball's height, and d is the ball's distance from the kicker, both in metres.
(a) What is the maximum height reached by the ball? What is the ball's horizontal distance at this point? [A: 2]
(b) What horizontal distance will the ball travel before it lands? [A:4]
(c) The goalposts are 35 m away from the kicker and the crossbar across the goalposts is about 3 m high. Will the ball clear the crossbar? Explain. [A: 3]
\qquad
\qquad Test 4
10. For each of the following parabolas, state the equation for the quadratic relation in the form $y=a(x-h)^{2}+k$. [A: 8]
(a)

(b)

Thinking:

11. A parabola, whose vertex is (3, -5), opens upward and passes through point $(13,20)$. Determine its equation in the form $y=a(x-h)^{2}+k$. [T:4]
12. A soccer ball is kicked from the ground level. When it has travelled 35 m horizontally, it reaches its maximum height of 25 m . The soccer ball lands on the ground 70 m from where it was kicked. Model this situation with a relation in the form $y=a(x-h)^{2}+k$. [T: 4]
\qquad
\qquad Test 4
13. Examine the given table of values and determine the equation of the relation in the form $y=a(x-h)^{2}+k . \quad[T: 4]$

\boldsymbol{x}	\boldsymbol{y}
-1	-32
0	-18
1	-8
2	-2
3	0
4	-2

Answers:

Part A:

1. b; 2. c; 3. d; 4. a; 5. e; 6. c; 7. d; 8. c

Part B:

1. (a) linear since first differences are constant, (b) quadratic since second differences are constant;
2. (i) (a) (5, -8), (b) upward, (c) $x=5$, (ii) (a) ($-2,7$), (b) downward, (c) $x=-2$;
3. x-intercepts $=-4$ and $-2, y$-intercept $=-4$;
4. (a) $y=2 x^{2}+4 x-16, y=2(x-2)(x+4)$, (b) $y=-0.5 x^{2}-8 x-14, y=-0.5(x+2)(x+14)$;
5. (a) x-intercepts $=6$ and $10, y$-intercept $=240$, (b) x-intercepts $=-1$ and $12, y$-intercept $=-36$
6. $y=-\frac{1}{4} x^{2}, y=-(x+2)^{2}+4, y=-4 x^{2}+4$;
7. (a) The parabola is a vertical compression of $y=x^{2}$ by a factor of 2 , and it is vertically translated downward by 6 units and horizontally translated to the right by 4 units relative to $y=x^{2}$,
(b)The parabola is a vertical stretch of $y=x^{2}$ by a factor of 3 , reflected in the x-axis, and it is vertically translated upward by 9 units and horizontally translated to the left by 5 units relative to $y=x^{2}$;
8. (a) two zeros because the parabola opens downward with the vertex above the x-axis, intersecting with the x-axis twice, (b) one zero because the parabola has its vertex on the x-axis;
9. (a) 14.44 m when horizontal distance is 19 m , (b) 38 m , (c) yes, height of ball is 4.2 m when the ball is 35 m away and it is higher than the 3 -m crossbar;
10.(a) $y=-\frac{1}{4}(x+2)^{2}+5$, (b) $y=3(x-5)^{2}-7$; 11. $y=-0.25(x-3)^{2}-5$; 12. $y=-0.02(x-35)^{2}+25$;
10. $y=-2(x-3)^{2}$
