Name: \qquad
Date: \qquad

Worksheet 4-9: Different Forms of Quadratic Relations

Each quadratic relation has three different ways to write its equation.

Vertex Form:	$\begin{aligned} & y=a(x-h)^{2}+k \\ & \text { vertex }=(\boldsymbol{h}, \boldsymbol{k}) \end{aligned}$	(vertex can be easily seen from the equation)
Standard Form:	$\begin{gathered} y=a x^{2}+b x+c \\ y \text {-intercept }=c \end{gathered}$	(y-intercept can be easily seen from the equation)
Intercept Form:	$\begin{aligned} & y=a(x-r)(x-s) \\ & x \text {-intercepts }=r \text { and } \end{aligned}$	(x-intercepts can be easily seen from the equation) S

1. Each relation is in vertex form. Write each relation in standard form. (Hint: Expand)
(a) $y=-2(x-7)^{2}$
(b) $y=3(x-5)^{2}-8$
2. Each relation is in vertex form. Write each relation in standard form, and in intercept form.
(a) $y=(x-3)^{2}-36$
(b) $y=-4(x-5)^{2}+100$

Name: \qquad
Date:
3. The x-intercepts of a quadratic relation are also called the "zeros" of a quadratic relation. Find the zeros of each quadratic relation.
(a) $y=-3(x-7)(x+5)$
(b) $y=x^{2}-8 x$
(c) $y=x^{2}+10 x+21$
(d) $y=3 x^{2}-24 x+48$
(e) $y=4 x^{2}-64$
(f) $y=x^{2}+3 x+25$
4. Which relation has more than one zero, only one zero, and no zero at all? Explain.
(a) $y=-5(x+8)^{2}$
(b) $y=3(x-7)^{2}+4$
(c) $y=-(x+6)^{2}+5$

Answers: 1. (a) $y=-2 x^{2}+28 x-98$, (b) $y=3 x^{2}-30 x+67$;
2. (a) $y=x^{2}-6 x-27, y=(x-9)(x+3)$, (b) $y=-4 x^{2}+40 x, y=-4 x(x-10)$;
3. (a) 7 and -5 , (b) 0 and 8 , (c) -3 and -7 , (d) 4 , (e) -4 and 4 , (f) none;
4. (a) one zero, (b) no zero, (c) two zeros

