Nai	me:
_	

Date: _____

Worksheet 4-9: Different Forms of Quadratic Relations

Each quadratic relation has three different ways to write its equation.

Vertex Form:	$y = a(x-h)^2 + k$ vertex = (h , k)	(vertex can be easily seen from the equation)
Standard Form:	$y = ax^{2} + bx + c$ y-intercept = c	(y-intercept can be easily seen from the equation)
Intercept Form:	y = a(x-r)(x-s) <i>x</i> -intercepts = <i>r</i> and	(x-intercepts can be easily seen from the equation) s

1. Each relation is in vertex form. Write each relation in standard form. (Hint: Expand)

(a)
$$y = -2(x-7)^2$$
 (b) $y = 3(x-5)^2 - 8$

2. Each relation is in vertex form. Write each relation in standard form, and in intercept form.

(a)
$$y = (x-3)^2 - 36$$
 (b) $y = -4(x-5)^2 + 100$

AChor/MBF3C

3. The *x*-intercepts of a quadratic relation are also called the "zeros" of a quadratic relation. Find the zeros of each quadratic relation.

(a)
$$y = -3(x-7)(x+5)$$
 (b) $y = x^2 - 8x$

(c)
$$y = x^2 + 10x + 21$$
 (d) $y = 3x^2 - 24x + 48$

(e)
$$y = 4x^2 - 64$$
 (f) $y = x^2 + 3x + 25$

4. Which relation has more than one zero, only one zero, and no zero at all? Explain.

(a)
$$y = -5(x+8)^2$$
 (b) $y = 3(x-7)^2 + 4$ (c) $y = -(x+6)^2 + 5$

Answers: 1. (a)
$$y = -2x^2 + 28x - 98$$
, (b) $y = 3x^2 - 30x + 67$;
2. (a) $y = x^2 - 6x - 27$, $y = (x - 9)(x + 3)$, (b) $y = -4x^2 + 40x$, $y = -4x(x - 10)$;
3. (a) 7 and -5, (b) 0 and 8, (c) -3 and -7, (d) 4, (e) -4 and 4, (f) none;
4. (a) one zero, (b) no zero, (c) two zeros