\qquad
\qquad

Worksheet 4-8: Interpret Graphs of Quadratic Relations

Besides the vertex, minimum or maximum y-value, and the axis of symmetry, x - and y-intercepts of a quadratic relation are also important information when interpreting a quadratic relation.
x-intercept is the x-coordinate of the point where the parabola crosses or touches the x-axis. y-intercept is the y-coordinate of the point where the parabola crosses or touches the y-axis.

1. State the x - and y-intercepts of each quadratic relation.
(a)

(b)

(c)

(d)

AChor/MBF3C

Name: \qquad
Date:
To find the x - and y-intercepts of a quadratic relation algebraically,
\rightarrow substitute $\boldsymbol{x}=\mathbf{0}$ into the quadratic equation to find the y-intercept.
\rightarrow substitute $\boldsymbol{y}=\mathbf{0}$ into the quadratic equation to find the x-intercept(s).
2. Find the y-intercept of each relation.
(a) $y=-3(x+2)^{2}-9$
(b) $y=0.1 x^{2}+0.4 x+1.8$
(c) $y=2(x-3)^{2}+12$
(d) $y=-4 x^{2}-8 x-9$
3. Find the x-intercept of each relation.
(a) $y=2(x-3)^{2}-8$
(b) $y=x^{2}+x-42$
(c) $y=-3(x+5)^{2}+27$
(d) $y=2 x^{2}-6 x-36$

Name: \qquad
Date:
the relation $h=-4.9 t^{2}+342$, A construction worker drops his wrench. Its fall is modelled by the time after the wrench was
where h is the height above the ground, in metres, and t is the then dropped, in seconds.
(a) How far above the ground was the wrench when it was dropped?
(b) How far has the wrench fallen after 5 seconds?
(c) When will the wrench hit the ground?

Name: \qquad
Date: \qquad
5. A football player kicks a football held 0.5 m above the ground. The football reaches a maximum height of 30 m at a horizontal distance of 18 m from the player.
(a) Determine a quadratic relation that models the path of the football.
(b) At what horizontal distance from the player does the football hit the ground?

Answers: 1. (a) x-intercepts $=2$ and $-2, y$-intercept $=-4$, (b) x-intercepts $=1$ and $-3, y$-intercept $=6$, (c) x-intercept $=-4, y$-intercept $=8$, (d) x-intercept $=$ none, y-intercept $=-4$;
2. (a) -21 , (b) 1.8, (c) 30, (d) -9 ; 3. (a) 5 or 1 , (b) 6 or -7 , (c) -2 or -8 , (d) 6 or -3
4. (a) 342 m above, (b) $342-219.5=122.5 \mathrm{~m}$, (c) after 8.4 s ;
5. (a) $y=-0.091(x-18)^{2}+30$, (b) 36.16 m from the player

