\qquad
Date: \qquad
Worksheet 4-7: Graphing Quadratic Relations $y=a(x-h)^{2}+k$

Method 1: Graphing by Transformation

Step 1 - Plot the vertex (Draw your transformed x-and y-axes from the vertex!)
Step 2 - Determine the opening direction of the parabola (upward if $a>0$; downward if $a<0$)
Step 3 - From the vertex, graph the next four points (assuming vertex is the origin):

- If $a>0$, graph next four points $(1,1 \times a),(-1,1 \times a),(2,4 \times a)$, and $(-2,4 \times a)$
- If $a<0$, graph next four points ($1,-1 \times a$), $(-1,-1 \times a),(2,-4 \times a)$, and $(-2,-4 \times a)$

Step 4 - Connect all points with a smooth curve and put arrows at both end of the parabola
Step 5 - Label the parabola and the axes

1. $y=3(x+4)^{2}-9$

2. $y=-\frac{1}{4}(x-1)^{2}+7$

Check out assigned work on next page.

AChor/MBF3C
3. $y=\frac{1}{3}(x+5)^{2}+1$

4. $y=-2(x-3)^{2}-1$

\qquad

Method 2: Graphing Using Vertex and Two Points

Step 1 - Identify the coordinates of the vertex
Step 2 - Determine the x-coordinates of two other points

- 2 units to the left of the vertex, and 2 units to the right of the vertex

Step 3 - Substitute the x-values from step 2 into $y=a(x-h)^{2}+k$ to find two points on the parabola
Step 4 - Plot the two points and the vertex on the same set of axes
Step 5 - Connect the points with a smooth curve and put arrows at both end of the parabola Step 6 - Label the parabola and the axes
5. $y=2(x-6)^{2}+3$

6. $y=-0.5(x+9)^{2}-2$

AChor/MBF3C
7. $y=-(x+2)^{2}-1$

8. $y=0.25(x+1)^{2}-5$

