Worksheet 4-6: Quadratic Relations $y = a(x-h)^2 + k$

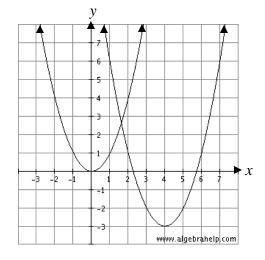
Review:

For each of the following parabolas,

- (a) state the coordinates of the vertex.
- (b) state the direction of the opening.

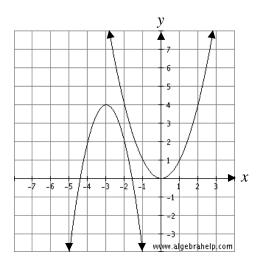
(i)
$$y = -3x^2$$

(i)
$$y = -3x^2$$
 (ii) $y = x^2 + 2$


(iii)
$$y = -(x-4)$$

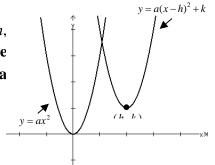
(iii)
$$y = -(x-4)^2$$
 (iv) $y = 2(x+5)^2 - 3$

Investigation: $y = a(x-h)^2 + k$

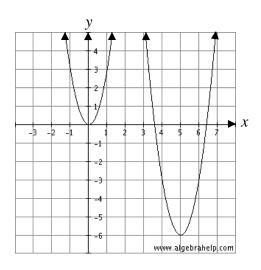

(a) Graph $y = x^2$ and $y = (x-4)^2 - 3$ on the same axes.

Compare the two parabolas, and describe the transformation.

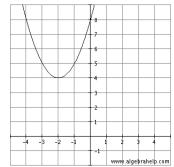
(b) Graph $y = x^2$ and $y = -2(x+3)^2 + 4$ on the same axes.


Compare the two parabolas, and describe the transformation.

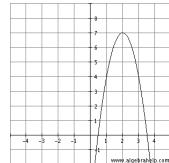
The graph of the quadratic relation $y = a(x-h)^2 + k$ (where a, h, and k are real numbers and a is not zero) can be obtained from the graph of $y = ax^2$ by a vertical translation of k units and a horizontal translation of k units.


The vertex of $y = a(x-h)^2 + k$ is at (h, k).

It opens upward if a > 0, downward if a < 0.


(c) Graph $y = 3x^2$ and $y = 3(x-5)^2 - 6$ on the same axes.

Compare the two parabolas, and describe the transformation.



1. For each of the following parabolas, state the vertex, axis of symmetry and equation for the quadratic relation.

(b)

