\qquad
Date: \qquad
Worksheet 5-6: Exponential Relations: $y=b^{x}$ and $y=a(b)^{x}$
Properties of Exponential Relations $y=b^{x}$:

- A relation of the form $y=b^{x}$, where $b>0$ and $b \neq 1$, is exponential.
- If $b>1$, moving left to right, the graph increases very slowly for negative x-values and increases more rapidly for positive x-values. The graph is almost horizontal on the left and very steep on the right.

- If $0<b<1$, moving from left to right, the graph decreases very rapidly for negative \boldsymbol{x} values and decreases more slowly for positive x-values. The graph is almost horizontal on the right and very steep on the left.

- The y-intercept is 1.
- There is no x-intercept.
- The "growth" factor or "decay" factor is the base of the power, b, which is the common ratio between successive y-values.

AChor/MBF3C

Name: \qquad
Date: WS 5-6

Investigation: Exponential Relations $y=a(b)^{x}$, where \boldsymbol{a} is the initial amount or \boldsymbol{y}-intercept

1. Graph $y=2^{x}, y=3\left(2^{x}\right)$, and $y=5(2)^{x}$ on the same axes and compare.

x	$y=2^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=3\left(2^{x}\right)$
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=5(2)^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

Conclusions: Compare the shape and y-intercept of the relations.

AChor/MBF3C

Name: \qquad
Date: \qquad
Investigation: Exponential Relations $y=b^{x}$, where x is multiplied or divided
2. Graph $y=2^{x}, y=2^{2 x}$, and $y=2^{\frac{x}{2}}$ on the same axes and compare.

x	$y=2^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=2^{2 x}$
-3	
-2	
-1	
0	
1	
2	
3	

x	$y=2^{\frac{x}{2}}$
-3	
-2	
-1	
0	
1	
2	
3	

Conclusions: Compare the shape and y-intercept of the relations.

Name: \qquad
Date:

3. Musical Scale

Middle A on a piano is known as A4. Its sound wave has a frequency of 440 cycles per second, also written as 440 Hertz (Hz). The table and the graph show the frequencies of each of the eight A-notes on a piano.

A-note	0	1	2	3	4	5	6	7
Frequency (Hz)	27.5	55	110	220	440	880	1760	3520

Piano A-note Frequency

(a) Describe the graph.
(b) Does the relationship between the A-notes on a piano and their frequencies model an exponential growth?
\qquad

4. Musical Scale

Ontario's population is projected to grow exponentially every year based on the relation $P=11000000(1.0112)^{n}$, where P is the estimated population and n is the number of years after 1996. The formula is expected to be valid until 2031.
(a) Sketch a graph of this relation.

\boldsymbol{n}	$P=11000000(1.0112)^{n}$
0	
10	
20	
30	
40	

(b) What was Ontario's population in 1996? Show this on the graph.
(c) What is the projected population for Ontario 2031?
\qquad

\qquad

\qquad
\qquad

Piano A-note Frequency

Name: \qquad
Date: \qquad

