\qquad
\qquad

Worksheet 5-5: Rates of Change/Growth

How do we identify linear, quadratic or exponential relations?

1. Classify by Equation:

() Linear: x is a first-degree variable (Exponent is 1).
(). Quadratic: x is a second-degree variable (Exponent is 2).
() Exponential: x itself is the exponent.
2. Classify by Graph:
© Linear: the graph is a straight line.
() Quadratic: the graph is a parabola (U-shape).
(;) Exponential: the graph is an exponential curve (J-shaped).
3. Classify by Finite Differences:
() Linear: first differences are constant.
© Quadratic: first differences increase by a constant value (adding). Second differences are constant.
© Exponential: first differences increase by a constant factor (multiplying), a common ratio.

Check for Understanding:

1. Without graphing, classify each of the following as linear, quadratic, or exponential growth.
(a) $3 x-4 y=12$
Linear
Quadratic
Exponential
(b) $y=2 x^{2}+3$

Linear
Quadratic
Linear Quadratic
Linear Quadratic
Exponential
2. Examine each graph and classify as linear, quadratic, or exponential growth.
(a)

Linear Quadratic Exponential
(b)

(c)

AChor/MBF3C

Investigation:

1. Graph $y=2 x$.

\boldsymbol{x}	$y=2 x$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

2. Graph $y=2 x^{2}$.

x	$y=2 x^{2}$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

AChor/MBF3C
3. Graph $y=2^{x}$.

x	$y=2^{x}$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

Name:
Date: \qquad

4. Graph $y=\left(\frac{1}{2}\right)^{x}$.

x	$y=\left(\frac{1}{2}\right)^{x}$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

Name: \qquad
Date: \qquad

5. Conclusions:

(-) $y=2 x$ is $\mathrm{a}(\mathrm{n})$ \qquad relation because x is a first-degree variable.

So, the graph is $\mathrm{a}(\mathrm{n})$ \qquad and it represents
\qquad growth.
(). $y=2 x^{2}$ is $\mathrm{a}(\mathrm{n})$ \qquad relation because x is a second-degree variable.

So, the graph is a(n) \qquad and it represents
\qquad growth.
(;) $y=2^{x}$ is $\mathrm{a}(\mathrm{n})$ \qquad relation because x is an exponent.

So, the graph is $\mathrm{a}(\mathrm{n})$ \qquad and it represents
\qquad growth.
(-) $y=\frac{1}{2}^{x}$ is $\mathrm{a}(\mathrm{n})$ \qquad relation because x is an exponent. So, the graph is a(n) \qquad and it represents exponential \qquad .

Note:

For exponential relation $y=b^{x}$, the curve gets closer to the y-axis as b increases when $b>1$ or as b decreases (denominator of b increases) when $0<b<1$ (a fraction or a decimal less than 1).

Check for Understanding:

Create the next diagram following the given pattern, and determine what type of relation is represented.
Diagram 1 Diagram 2 Diagram 3

