AChor/MBF3C

Name:

Date:

Worksheet 5-5: Rates of Change/Growth

How do we identify linear, quadratic or exponential relations?

1. Classify by Equation:

- \odot Linear: *x* is a first-degree variable (Exponent is 1).
- \odot Quadratic: *x* is a second-degree variable (Exponent is 2).
- \odot Exponential: *x* itself is the exponent.

2. Classify by Graph:

- ☺ Linear: the graph is a straight line.
- © Quadratic: the graph is a parabola (U-shape).
- © Exponential: the graph is an exponential curve (J-shaped).

3. Classify by Finite Differences:

- ☺ Linear: first differences are constant.
- © Quadratic: first differences increase by a constant value (adding). Second differences are constant.
- © Exponential: first differences increase by a constant factor (multiplying), a common ratio.

Check for Understanding:

1. Without graphing, classify each of the following as linear, quadratic, or exponential growth.

(a) $3x - 4y = 12$	Linear	Quadratic	Exponential
(b) $y = 2x^2 + 3$	Linear	Quadratic	Exponential
(c) $y = \left(\frac{1}{5}\right)^x$	Linear	Quadratic	Exponential
(d) $y = 3(1.05)^x$	Linear	Quadratic	Exponential

2. Examine each graph and classify as linear, quadratic, or exponential growth.

Assigned Work: WS 5-5; p. 390 #1-2, #9, #13

Investigation:

x	y = 2x	First Difference
-3		
-2		
-1		
0		
1		
2		
2		
3		

							Ś	/							
_	_									 					_
-	_							-		 				-	-
-									 	 	 				-
															-
															_
_								_		 				<u> </u>	_
-	_							-		 					_
-	-													—×	111
_															
_	_							-						-	_
-	-									 					_
-															-
_										 				<u> </u>	_
-	_							_		 				-	_

2. Graph $y = 2x^2$.

x	$y = 2x^2$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

AChor/MBF3C

3. Graph $y = 2^x$.

x	$y = 2^x$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

Name:	WG E E
Date:	w 5 5-5

4. Graph $y = \left(\frac{1}{2}\right)^x$.

x	$y = \left(\frac{1}{2}\right)^x$	First Difference
-3		
-2		
-1		
0		
1		
2		
3		

A(Choi	c/MBF3C		Name: Date:			
5.	Co	nclusions:					
	\odot	y = 2x is $a(n)$		relation because <i>x</i> is a first-degree variable.			
		So, the graph is a(n)		and it represents			
			growth.				
	\odot	$y = 2x^2$ is a(n)		relation because x is a second-degree variab	le.		
		So, the graph is a(n)		and it represents			
			growth.				
	\odot	$y = 2^x$ is $a(n)$		relation because x is an exponent.			
		So, the graph is a(n)		and it represents			
			growth.				
	☺	$y = \frac{1}{2}^x$ is $a(n)$		relation because <i>x</i> is an exponent.			
		So, the graph is a(n)		and it represents			
		exponential					

Note:

For exponential relation $y = b^x$, the curve gets closer to the *y*-axis as *b* increases when b > 1 or as *b* decreases (denominator of *b* increases) when 0 < b < 1 (a fraction or a decimal less than 1).

Check for Understanding:

Create the next diagram following the given pattern, and determine what type of relation is represented.

Diagram 1 Diagram 2 Diagram 3

