\qquad
Date: \qquad
Worksheet 4-3: Quadratic Relations $y=a x^{2}$
Investigation 1: $y=a x^{2}$, "positive a " vs. "negative a "
On the same axes, graph $y=x^{2}$ and $y=-x^{2}$.

\boldsymbol{x}	$x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

x	$-x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

Compare to the basic parabola $y=x^{2}$,
(a) how is $y=-x^{2}$ similar to $y=x^{2}$?
(b) how is $y=-x^{2}$ different from $y=x^{2}$?
$y=x^{2}$ and $y=-x^{2}$ are vertical reflections of each other along the x-axis.

Conclusion:

When a is positive,
the parabola opens upward, and the vertex is at $(0,0)$.

When a is negative, the parabola opens downward, and the vertex is at $(0,0)$.
\qquad
Date:
Investigation 2: $y=a x^{2}$, when \boldsymbol{a} is positive and greater than 1
On the same axes, graph $y=x^{2}, y=2 x^{2}$ and $y=3 x^{2}$.

\boldsymbol{x}	$2 x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

\boldsymbol{x}	$3 x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

Compare the three parabolas,
(a) how are they similar?
(b) how are they different?

$$
y=2 x^{2} \text { and } y=3 x^{2} \text { are vertical stretches of } y=x^{2} .
$$

Conclusion:

Compared to $y=x^{2}$, the graph of $y=a x^{2}$ is

- stretched vertically, and thus narrower, if $a>1$
- the parabola opens upward and the vertex is at $(0,0)$

\qquad
Date:
Investigation 3: $y=a x^{2}$, when a is positive and less than 1
On the same axes, graph $y=x^{2}, y=\frac{1}{2} x^{2}$ and $y=\frac{1}{4} x^{2} .{ }^{* *} H$ int: Use 2 units as $\mathbf{1}$ for the \boldsymbol{y}-axis

x	$\frac{1}{2} x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

\boldsymbol{x}	$\frac{1}{4} x^{2}=y$	(x, y)
2		
1		
0		
-1		
-2		

Compare the three parabolas,
(a) how are they similar?
(b) how are they different?

$$
y=\frac{1}{2} x^{2} \text { and } y=\frac{1}{4} x^{2} \text { are vertical compressions of } y=x^{2} .
$$

Conclusion:

Compared to $y=x^{2}$, the graph of $y=a x^{2}$ is

- compressed vertically, and thus wider, if $0<a<1$
- the parabola opens upward and the vertex is at $(0,0)$

Name:
Date: \qquad

1. Match the following graphs to their corresponding equations.
$y=\frac{1}{2} x^{2}$
$y=-2 x^{2}$
$y=4 x^{2}$
$y=-\frac{1}{3} x^{2}$

2. State the vertex and the equation for each of the following graphs.
(a)

(b)

