Name: _____

Date: ____

Worksheet 4-3: Quadratic Relations $y = ax^2$

Investigation 1: $y = ax^2$, "positive *a*" vs. "negative *a*"

On the same axes, graph $y = x^2$ and $y = -x^2$.

x	$x^2 = y$	(<i>x</i> , <i>y</i>)
2		
1		
0		
-1		
-2		

x	$-x^2 = y$	(<i>x</i> , <i>y</i>)
2		
1		
0		
-1		
-2		

Compare to the basic parabola $y = x^2$,

(a) how is $y = -x^2$ similar to $y = x^2$?

(b) how is $y = -x^2$ different from $y = x^2$?

 $y = x^2$ and $y = -x^2$ are <u>vertical reflections</u> of each other along the *x*-axis.

Conclusion:

When a is positive, the parabola opens upward, and the vertex is at (0, 0). When a is negative, the parabola opens downward, and the vertex is at (0, 0).

Assigned Work: WS 2-3; p. 190 #1, #4 (a, c), #9, #11

Investigation 2: $y = ax^2$, when *a* is positive and greater than 1

On the same axes, graph $y = x^2$, $y = 2x^2$ and $y = 3x^2$.

x	$2x^2 = y$	(x, y)
2		
1		
0		
-1		
-2		

x	$3x^2 = y$	(x, y)
2		
1		
0		
-1		
-2		

Compare the three parabolas,

(a) how are they similar?

(b) how are they different?

 $y = 2x^2$ and $y = 3x^2$ are <u>vertical stretches</u> of $y = x^2$.

Conclusion:

Compared to $y = x^2$, the graph of $y = ax^2$ is

- stretched vertically, and thus narrower, if a > 1
- the parabola opens upward and the vertex is at (0, 0)

AChor/MBF3C

Name:	
Date: _	WS 4-3

Investigation 3: $y = ax^2$, when *a* is positive and less than 1

On the same axes, graph $y = x^2$, $y = \frac{1}{2}x^2$ and $y = \frac{1}{4}x^2$. **Hint: Use 2 units as 1 for the y-axis

x	$\frac{1}{2}x^2 = y$	(x, y)
2		
1		
0		
-1		
-2		

x	$\frac{1}{4}x^2 = y$	(<i>x</i> , <i>y</i>)
2		
1		
0		
-1		
-2		

Compare the three parabolas,

(a) how are they similar?

(b) how are they different?

Conclusion:

Compared to $y = x^2$, the graph of $y = ax^2$ is

- compressed vertically, and thus wider, if 0 < a < 1•
- the parabola opens upward and the vertex is at (0, 0)•

- $y = \frac{1}{2}x^{2}$ $y = -2x^{2}$ $y = 4x^{2}$ $y = -\frac{1}{3}x^{2}$ $y = -\frac{1}{3}x^{2}$ $y = -\frac{1}{3}x^{2}$ $y = 4x^{2}$ $y = -\frac{1}{3}x^{2}$ $y = -\frac{1}{3}x^{2}$
- 1. Match the following graphs to their corresponding equations.

- 2. State the vertex and the equation for each of the following graphs.
- **(a)**

(b)

