Name: \qquad
Date: \qquad

Worksheet 6-3: Compound Interest Formula

For compound interest, the formula $A=P(1+i)^{n}$ is used to calculate the amount, or final amount of a loan or an investment, where
A is the amount, or final amount
i is the interest rate per compounding period
P is the principal, or initial amount
n is the number of compounding periods

Initial Amount (P)	Annual Interest Rate (r)	Time in Years (y)	Compounding Effect	Compounding Periods per Year (N)	Interest rate per Period (i)	Number of Periods (n)
100	12%	1	Annually			
100	12%	1	Semi-annually			
100	12%	1	Quarterly			
100	12%	1	Monthly			
100	12%	2	Annually			
100	12%	2	Semi-annually			
100	12%	2	Quarterly			
100	12%	2	Monthly			
100	12%	5	Annually			
100	12%	5	Semi-annually			
100	12%	5	Quarterly			
100	12%	5	Monthly			

To calculate the value of I, use $i=r \div N$, where r is the annual interest rate and N is the number of compounding periods per year.

$$
i=\frac{\text { Annual Interest Rate }(r)}{\text { Number of Compounding Periods per Year }(N)}
$$

To calculate the value n, use $n=y N$, where y is the number of years and N is the number of compounding periods per year.

$$
n=\text { Number of Years }(y) \times \text { Number of Compounding Periods per Year }(N)
$$

Name: \qquad
\qquad

1. For each scenario,
(a) state the values of P, n, and i.
(b) Write in the form $A=P(1+i)^{n}$ and calculate the final amount A.
(i) You invested $\$ 500$ for 6 years at 4% per year, compounded semi-annually.
(a)
(b)
(ii) Mr. Fourman borrowed $\$ 300$ for 2 years at 5\% per year, compounded quarterly
(a)
(b)
2. Ms. Chor borrowed $\$ 5000$ to start a small business. The interest rate on the loan was 9% per year, compounded monthly. She is expected to repay the loan in full after four years.
(a) How much must Ms. Chor repay?
(b) How much of the amount Ms. Chor repays will be interest?

Answers: 1. (i)(a) $P=500, i=0.02, n=12$, (b) $\$ 634.12$, (ii)(a) $P=300, i=0.0125, n=8$, (b) $\$ 331.35$; 2. (a) $\$ 7157.03$, (b) $\$ 2157.03$

AChor/MBF3C

Name: \qquad
Date: \qquad Interest

Timeline of Compound Interest

1. Interest Compounding Annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
2. Interest Compounding Semi-annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
3. Interest Compounding Quarterly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
4. Interest Compounding Monthly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$

Name: \qquad
\qquad Interest
5. Interest Compounding Annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
6. Interest Compounding Semi-annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
7. Interest Compounding Quarterly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
8. Interest Compounding Monthly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$

AChor/MBF3C

Name: \qquad
Date: \qquad Interest
9. Interest Compounding Annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
10. Interest Compounding Semi-annually: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
11. Interest Compounding Quarterly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$
12. Interest Compounding Monthly: Annual Interest $=r=12 \%$

Interest Rate per Compound Period, $i=$
Number of Compounding Periods, $n=$

