Name: ______ Date: _____

Worksheet 2-2: Theoretical Probability

Theoretical probability is another measure of the likelihood of an event. It is the ratio of the number of successful outcomes and the total number of possible outcomes.

Theoretical Probability of An Event		
	umber of Successful Outcomes	
Tota	al Number of Possible Outcomes	

To calculate the theoretical probability, all outcomes <u>must be equally likely</u>.

"Equally likely" means the <u>same chance</u> of occurring because the conditions are fair.

For example, in the toss of a fair coin, the chances of getting heads or tails are equally likely.

Experiment	Event	Total Number of Possible Outcomes	Number of Successful Outcomes	Theoretical Probability
Toss a coin	Turning up heads	2	1	$\frac{1}{2}$
Roll one die	Turning up 4	6	1	$\frac{1}{6}$
Draw a playing card	Drawing an ace	52	4	$\frac{1}{13}$

1. A standard deck of playing cards has 52 cards, 13 of each suit. If one card is drawn from the deck, find the probability of each event.

(a) a heart

(b) a heart, a club or a jack

(b) a black diamond

(d) a heart, a club, a spade, or a diamond

AChor/MBF3C	Name:	
	Date:	WS 2-2

2. What is the probability of rolling doubles with a pair of dice?

3. Suppose you roll two six-sided dice. Find the theoretical probability of rolling each sum. Express each answer as a fraction in lowest terms.

(a) 2

(c) 7

(d) not 7

(b) 11

(e) a sum greater than 5

AChor/MBF3C	Name:	
	Date:	WS 2-2

4. During a game of musical chairs, 10 people walk around eight chairs waiting for the music to stop. Find the probability of a person not getting a chair.

- 5. Suppose you roll two six-sided dice.
- (a) Explain why the probability of rolling a sum of 14 is 0.

(b) Explain why the probability of rolling a sum from 2 to 12 is 1.

6. A card is randomly selected from a standard deck of cards. Write the theoretical probability of each event as a fraction in lowest terms.

(a) a red king

(b) a face card

Answers: 1. (a) ¹/₄, (b) ⁷/₁₃, (c) 0, (d) 1; 2. ¹/₆; 3. (a) ¹/₃₆, (b) ¹/₁₈, (c) ¹/₆, (d) ⁵/₆, (e) ¹³/₁₈; 4. ¹/₅;
5. (a) greatest possible sum is 12 since biggest number for each die is 6, (b) any sum from 2 to 12 can be rolled with two six-sided dice, so all 36 sums are possible outcomes; 6. (a) ¹/₂₆, (b) ³/₁₃.