Name: \qquad
Date: \qquad

Worksheet 1-2: Solving a Right Triangle

To solve a right triangle means to find all the unknown sides and unknown angles of the right triangle.
Since each trigonometric ratio involves 3 pieces of information (one \qquad and two \qquad).
Two of the three pieces of information must be given to find the unknown information.

Properties of Right Triangle

I. Triangle Sum Theorem

II. Complementary Angles

III. Pythagorean Theorem: $c^{2}=a^{2}+b^{2}$
c is the \qquad . \qquad

Practice:

1. Find the measure of the unknown side, round to the nearest tenth of a centimetre.

AChor/MBF3C

Name: \qquad
Date: \qquad
Case 1: Solving a right triangle, given
Solve $\triangle \mathrm{ABC}$. Find side lengths to the nearest tenth of a centimetre and angles to the nearest degree. (Hint: Always try to use the known values that are given to find the unknown values to avoid errors.)

AChor/MBF3C

Name: \qquad
Date: \qquad
Case 2: Solving a right triangle, given
Solve \triangle DEF. Find side lengths to the nearest tenth of a centimetre and angles to the nearest degree. (Hint: Always try to use the known values that are given to find the unknown values to avoid errors.)

AChor/MBF3C

Name: \qquad
Date:
2. Solve $\Delta \mathrm{LMN}$. Find side lengths to the nearest tenth of a metre and angles to the nearest degree.

AChor/MBF3C

Name: \qquad
Date: \qquad
3. Find the measure of AD , to the nearest tenth of a metre.

4. Find the measure of $B C$, to the nearest tenth of a metre.

5. Find the measure of AD , to the nearest tenth of a centimetre.

AChor/MBF3C

Name: \qquad
Date:
6. Find the area of the trapezoid, to the nearest square centimetre.

Answers: 1. 12 cm ; Case 1: $\angle A=30^{\circ}, a=12.5 \mathrm{~m}, b=21.7 \mathrm{~m}$; Case 2: $D F=6.9 \mathrm{~cm}, \angle E=32^{\circ}, \angle \mathrm{D}=58^{\circ}$;
2. $\angle N=60^{\circ}, L M=12.1 \mathrm{~m}, L N=14 \mathrm{~m}$; 3. 16.8 m ; $4.15 .5 \mathrm{~m} ; 5.40 .5 \mathrm{~cm} ; 6.290 \mathrm{~cm}^{2}$.
\qquad
\qquad

Practise

6. a) Find the measure of the hypotenuse.
b) Find the measure of side a.

7. a) Find the measure of side b.
b) Find the measure of side c.

8. a) Find the measure of side a.
b) Find the measure of side b.

9. Solve $\triangle \mathrm{ABC}$.

Answers

6. a) $x=3$
b) $x=3$
c) $x=20, y=4$
7. a) 1 unit of distance on the map represents 700000 of the same unit of distance on the earth.
b) 84 km
c) 5.7 cm
8. a) 3.46
b) 19.83
c) 9015.98
9. a) 7.7
b) 26.9
c) 0.9
