Name:	
Date:	

Worksheet 1-2: Solving a Right Triangle

To solve a right triangle means to find all the unknown sides and unknown angles of the right triangle.

Since each trigonometric ratio involves 3 pieces of information (one and two). **Two of the three pieces of information** must be given to find the unknown information.

Properties of Right Triangle

- **Triangle Sum Theorem** I.
- **II.** Complementary Angles
- **III. Pythagorean Theorem:** $c^2 = a^2 + b^2$

c is the ______. *b* and *c* are the ______.

Practice:

1. Find the measure of the unknown side, round to the nearest tenth of a centimetre.

Name:	
Date:	WS 1-2

Case 1: Solving a right triangle, given _____

Solve \triangle ABC. Find side lengths to the nearest tenth of a centimetre and angles to the nearest degree. (*Hint: Always try to use the known values that are given to find the unknown values to avoid errors.*)

AChor/MBF3C

Name:	 WC 1 0
Date: _	 WS 1-2

Case 2: Solving a right triangle, given _

Solve ΔDEF . Find side lengths to the nearest tenth of a centimetre and angles to the nearest degree. (*Hint: Always try to use the known values that are given to find the unknown values to avoid errors.*)

Name:	
Date:	 WS 1-2

2. Solve Δ LMN. Find side lengths to the nearest tenth of a metre and angles to the nearest degree.

Name:	
Date:	WS 1-2

3. Find the measure of AD, to the nearest tenth of a metre.

4. Find the measure of BC, to the nearest tenth of a metre.

5. Find the measure of AD, to the nearest tenth of a centimetre.

Name:	 WG 1 0
Date:	 WS 1-2

6. Find the area of the trapezoid, to the nearest square centimetre.

Answers: 1. 12 cm; Case 1: $\angle A = 30^{\circ}$, a = 12.5 m, b = 21.7 m; Case 2: DF = 6.9 cm, $\angle E = 32^{\circ}$, $\angle D = 58^{\circ}$; 2. $\angle N = 60^{\circ}$, LM = 12.1 m, LN = 14 m; 3. 16.8 m; 4. 15.5 m; 5. 40.5 cm; 6. 290 cm².

Practise

- **6.** a) Find the measure of the hypotenuse.**b)** Find the measure of side *a*.
- 7. a) Find the measure of side *b*.b) Find the measure of side *c*.
- 8. a) Find the measure of side *a*.b) Find the measure of side *b*.
- **9.** Solve $\triangle ABC$.

Name: _____ Date: _____

Answers

6. a) <i>x</i> = 3	b) $x = 3$	c) $x = 20, y = 4$

- **7. a)** 1 unit of distance on the map represents 700 000 of the same unit of distance on the earth.
 - **b)** 84 km
 - **c)** 5.7 cm

8.	a) 3.46	b) 19.83	c) 9015.98
9.	a) 7.7	b) 26.9	c) 0.9