Name:	
Date:	

<u>Worksheet 3-3: Factoring Trinomials of the Form $x^2 + bx + c$ </u>

For a trinomial of the form $x^2 + bx + c$, the factors are of the form (x+m)(x+n), where m+n=b and mn=c. Therefore: $x^{2} + bx + c = x^{2} + (m+n)x + (mn) = (x+m)(x+n)$

To factor a trinomial means writing $x^2 + bx + c$ as (x+m)(x+n).

How do we find m and n to factor the trinomial? We need to find two factors when multiplied equals c but added to b .		mn = c
		т
	x	n
Example 1: Factor each trinomial.	m + i	n=b

(Hint: Find two factors of c when added together equals b. Watch for the signs!)

 $\begin{array}{c|c} x^2 + 6 \\ \hline x + 2 \\ x + 3 \end{array}$ (a) $x^2 + 5x + 6$ b = 5 c = 6= (x+2)(x+3)

(You may check your answer by expanding the brackets to see if the brackets multiplied to $x^2 + 5x + 6$.)

 $\begin{array}{c|c} a^2 & -18 \\ \hline a & -6 \\ a & +3 \end{array}$ (b) $a^2 - 3a - 18$ b = -3 c = -18= (a-6)(a+3)

(c)
$$y^2 - 8y + 15$$
 $b = -8$ $c = 15$
= $(y-3)(y-5)$ $y = -3$
 $y = -5$

Assigned Work: WS 3-3; p. 253 #3, #8, #11, #14, #15

AChor/MBF3C			Name: Date:	WS 3-3
1. Factor $x^2 + 6x$.	<i>b</i> =	<i>c</i> =		
2. Factor $a^2 - 13a + 36$.	<i>b</i> =	<i>c</i> =		
3. Factor $y^2 - 2y - 24$.	<i>b</i> =	<i>c</i> =		
4. Factor $x^2 + 7x + 12$.	<i>b</i> =	<i>c</i> =		
5. Factor $a^2 - 64$	<i>b</i> =	<i>c</i> =		
IMPORTANT NOTE:	$(x+a)(x+a) = (x+a)^2$	and	$(x-a)(x-a) = (x-a)^2$	
6. Factor $x^2 + 14x + 49$.	<i>b</i> =	<i>c</i> =		
7. Factor $y^2 - 10y + 25$.	<i>b</i> =	<i>c</i> =		

AChor/MBF3C

8. Find an expression, in factored form, for the area of each given figure.

(a) Area =
$$x^2 - 12x + 32$$

(b) Area = $x^2 + 14x + 49$

9. The area of a \$10 bill can be represented by the expression $x^2 - 25$.

(a) Find the expressions for the length and width of the \$10 bill.

(b) Find the dimensions of the \$10 bill when x = 12 cm.

(c) If the area of the \$10 bill is 75 cm², find the length and width of the \$10 bill.

Answers: 1.
$$x(x+6)$$
; 2. $(x-4)(x-9)$; 3. $(x+4)(x-6)$; 4. $(x+3)(x+4)$; 5. $(a+8)(a-8)$; 6. $(x+7)^2$; 7. $(y-5)^2$;
8. (a) $(x-4)(x-8)$, (b) $(x+7)^2$; 9. (a) $(x+5)(x-5)$, (b) 17 cm by 7 cm, (c) 15 cm by 5 cm