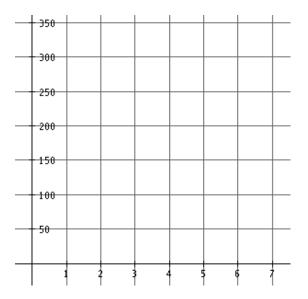
Name:	
Date:	

Worksheet 6-2: Compound Interest

Often, when money is borrowed or invested, the interest is added on to the principal after a set period of time. Then, after the same period of time, interest is calculated again. If no repayment or withdrawal has been made, the interest will be calculated on the **new amount**, which includes the **principal and interest**. This continues until the loan or investment is finished. This type of interest calculation is called **compound interest**.


Compound Interest Investigation:

Suppose Rachel's grandparents leave the interest in the account so that each year, the interest earned is added to the principal instead of being taken out. As a result, Rachel does not receive a cheque every year on her birthday but a cheque of total interest earned on her 5th birthday.

Year (t)	Amount in Account (P)	Interest Rate (r) per year	Interest Earned per year	Total Interest (1)
1	\$1000	6% = 0.06	$1000 \times 0.06 = 60	\$60.00
2	\$1060	6% = 0.06	$1060 \times 0.06 = 63.6	\$123.60
3		6% = 0.06		
4		6% = 0.06		
5		6% = 0.06		

(a) What pattern do you see in the table? Explain the patterns.

(b) Plot Total Interest against Year.Describe how the total interest grows.

Assigned Work: WS 6-2; p. 428 #4-7, #8 (b), #9

AChor/MBF3C	Name:	WE (2
	Date:	WS 6-2

Develop a simplified formula to calculate the amount in the account after n years if

- A is the final amount of an investment including the principal and the accumulated interest
- *P* is the principal of the investment (initial amount)
- *i* is the interest rate (growth factor of the investment) *in decimal form*
- *n* is the number of years

Example 1: Compare Simple and Compound Interest

(a) Larry wants to invest \$700 for five years. Compare the growth of his investment at 4% per year, simple interest, to the same investment at 4% per year, compounded annually.

(b) Harry wants to invest \$800 for ten years. Compare the growth of his investment at 8% per year, simple interest, to the same investment at 8% per year, compounded annually.