AChor/MBF3C

Name: \qquad
Date: \qquad

Worksheet 5-1: Powers and Exponent Rules

Exponent Review:

$$
\begin{aligned}
& 2^{4} \text { is a power, where } \mathbf{2} \text { is the base of the power } \\
& \text { and } \mathbf{4} \text { is the exponent of the power } \\
& \text { Exponential Form } \rightarrow 2^{4}=2 \times 2 \times 2 \times 2 \quad \begin{array}{l}
\text { Product Form } \\
=16 \\
\text { Standard Form }
\end{array}
\end{aligned}
$$

Investigation 1: Multiplying Powers with the Same Base

Product	Expanded Form	Number of Factors	Single Power
$5^{2} \times 5^{4}$	$(5 \times 5) \times(5 \times 5 \times 5 \times 5)$	6	5^{6}
$3^{5} \times 3^{2}$			
$(-2)^{5} \times(-2)^{3}$			
$\left(\frac{1}{2}\right)^{5} \times\left(\frac{1}{2}\right)$			

Exponent Rule 1: $\left(x^{m}\right)\left(x^{n}\right)=$

Investigation 2: Dividing Powers with the Same Base

Quotient	Expanded Form	Number of Factors	Single Power
$\frac{5^{6}}{5^{2}}$	$\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5}$	4	5^{4}
$\frac{3^{5}}{3^{3}}$			
$(-7)^{4} \div(-7)$			
$\left(\frac{2}{3}\right)^{4} \div\left(\frac{2}{3}\right)^{3}$			

Exponent Rule 2: $x^{m} \div x^{n}=$

Name: \qquad
Date: \qquad WS 5-1

Investigation 3: Power of a Power

Power	Expanded Form	Number of Factors	Single Power
$\left(5^{3}\right)^{2}$	$\left(5^{3}\right) \times\left(5^{3}\right)=(5 \times 5 \times 5) \times(5 \times 5 \times 5)$	6	5^{6}
$\left(3^{2}\right)^{4}$			
$\left((-7)^{2}\right)^{3}$			
$\left(\left(\frac{1}{2}\right)^{4}\right)^{3}$			

Exponent Rule 3: $\left(x^{m}\right)^{n}=$

Practice:

1. Write each expression as a single power, then evaluate. You need a scientific calculator!
(a) $6^{2} \times 6^{3}$
(b) $\frac{(-7)^{6}}{(-7)^{4}}$
(c) $\left(3^{4}\right)^{3}$
(d) $\left(\frac{1}{2^{3}}\right)^{2}$
2. Evaluate $\left(\frac{1}{81}\right)^{3}$ and $\left(\frac{1}{9}\right)^{6}$. Use the exponent rule to explain why the answers are the same.
3. Mac evaluated the problem $2^{3} \times 2^{2}$. His solution is 2^{6}. Is his solution correct? If not, explain where he went wrong and correct his work.
