7.1 Exponent Rules, pages 356–364

1. Write as a single power, then evaluate.

a)
$$6^2 \times 6^3$$

b) $(-2)^2 \times (-2)^4$
c) $\frac{5^{10}}{5^7}$
d) $\left(\frac{1}{3}\right)^3 \times \left(\frac{1}{3}\right)^3$
e) $(10^4)^2$
f) $[(-7)^2]^2$
g) $\frac{3^8}{3^5}$
h) $\left(-\frac{1}{2}\right)^2 \times \left(-\frac{1}{2}\right)^3$

2. Calculate the area of the square. $A = s^2$

7.2 Zero and Negative Exponents, pages 365–371

3. Evaluate. Express your answers as whole numbers or fractions.

a)
$$7^{0}$$
 b) 5^{-1} c) 8^{-3}
d) $\left(\frac{1}{50}\right)^{0}$ e) $\left(\frac{2}{3}\right)^{-2}$ f) $4^{-2} \times 4^{5}$
g) $\frac{7^{2}}{7^{3}}$ h) $[(-3)^{2}]^{-1}$ i) $\frac{1}{2^{-3}}$
j) $\frac{1}{5^{-1}}$

7.3 Investigate Exponential Relationships, pages 372–381

4. Which graph represents an exponential relationship? Explain.

		y					
	-1	0 0		10	20	30	x
		-10	1				
⊢		+					
		-20					
		Y	Ý				

MHR • Chapter 7

414

 A certain type of bacteria doubles every 8 h. A culture begins with 30 000 bacteria. How many bacteria are there after

a) 8 h? b) 16 h? c) 4 days?

7.4 Exponential Relations, pages 382–394

6. Compare the graphs of $y = 3^x$, $y = 3x^2$, and y = 3x, for values of x = -4, -3, -2, -1, 0, 1, 2, 3, 4. How are they similar? different?

7. The measure of the acidity of a solution is called its pH. In wells and swimming pools, the pH level of water needs to be checked regularly for the level of hydrogen. The relation H = (1/10)^P gives an indication of the concentration of hydrogen ions, *H*, in moles per litre (mol/L), where *P* represents the pH.
a) Plot a graph of this relation.

- **b)** Water with a pH of less than 7.0 is acidic. What is the hydrogen concentration for a pH of 7.0?
- c) Water in a swimming pool needs to be kept at a pH between 7.0 and 7.6. What is the equivalent range of hydrogen concentration?
- d) Rain water has a pH of 5.6. Due to sulphur pollution, acid rain has a pH of less than 5.0. Compare the concentrations of hydrogen in rain and acid rain.

7.5 Modelling Exponential Growth and Decay, pages 395–405

- 8. A town's raccoon population is growing exponentially. The expected population can be estimated using the relation $P = 1250(1.013)^n$, where *P* is the population and *n* is the number of years.
 - **a**) Use technology to plot a graph of this relation.
 - **b**) What is the current raccoon population?
 - •) What is the expected population in 5 years?
- **9.** The amplitude of a pendulum over a 60-s period is shown in the table.

Time (s)	0	10	20	30	40	50	60
Amplitude (cm)	80.0	40.0	20.0	10.0	5.0	2.5	1.25

- a) Use technology to make a scatter plot.
- **b)** Do the results of this experiment demonstrate exponential growth or decay? Explain.

- **c)** What is the rate of growth or decay, in amplitude?
- d) How long would it take for the swings to become unnoticeable (less than 0.2 cm)?

7.6 Solve Problems Involving Exponential Growth and Decay, pages 406–413

10. The remaining mass of a drug in a person's bloodstream is modelled by

 $M = 500 \left(\frac{1}{2}\right)^{\frac{t}{2}}$, where *M* is the remaining mass in milligrams, and *t* is the

time, in hours, that the drug is in the bloodstream.

- a) What is the half-life of the drug?
- **b)** What was the dosage of the drug?
- c) What will be the concentration of the drug in the bloodstream
 i) after 2 h?
 ii) after 6 h?
- **11.** From 1994 to 2004, average personal incomes grew in Canada according to the relation $I = I_0(1.041)^n$, where *I* is the resulting income, I_0 is the initial income, and *n* is the number of years of growth.
 - a) If a person's income was \$34 000 in 1994, what would it be in 2004?
 - **b)** If a person's income was \$50 000 in 1996, what would it be in 2003?
 - **c)** What was the average yearly rate of growth from 1994 to 2004?

Practice Test

- 1. True or false?
 - a) Linear growth shows increases by a constant amount each time period.
 - **b)** Exponential growth shows increases by a constant factor each time period.
 - c) Exponential decay shows decreases by a fixed amount each time period.
 - **d**) Quadratic growth is confirmed by unequal first differences and equal second differences.
- **2.** Evaluate. Write your answers as integers or fractions.
 - a) $3^3 \times 3^2$ b) $\frac{9^7}{9^5}$ c) $(2^3)^2$ d) 6^0 e) 7^{-2} f) $\left(\frac{1}{5}\right)^{-3}$ g) $4^{12} \times 4^{-3} \times 4^{-9}$ h) $\left(\frac{1}{3}\right)^2 \left(\frac{1}{3}\right)^{-1}$
- **3.** i) Sketch a graph of each relation.
 - ii) Classify each as exponential growth, exponential decay, or neither. Justify your response.
 - **a)** $y = \left(\frac{1}{4}\right)^{x}$ **b)** $y = 6x^{2}$

c)
$$y = 5^x$$

d)
$$y = 3(0.5)^{\frac{3}{4}}$$

- 4. Topsoil is commonly measured in cubic yards (yd³) and cubic feet (ft³). A medium-sized dump truck can hold about 9 yd³ of topsoil. A wheelbarrow can hold about 3 ft³ of topsoil.
 - a) How many cubic feet are in a cubic yard? (1 yd = 3 ft) Express your answer as a power.
 - b) Express 9 yd³ in cubic feet as a power with base 3.
 - c) A family ordered 9 yd³ of topsoil to landscape their yard. How many trips with a wheelbarrow will they need to make in order to move all the topsoil that was delivered?
- 5. You have investigated graphs of exponential relations of the form y = b^x for b > 0. Explain why graphs of this form remain above the *x*-axis.
- **6.** In 1878, moose were first introduced in Newfoundland with a single bull and a single cow. Today, there are approximately 150 000 moose in Newfoundland.
 - a) On the same set of axes, draw a linear, a quadratic, and an exponential graph to represent growth of the moose population.
 - **b)** Which type of growth is most likely? Explain.

Chapter Problem Wrap-Up

The table shows the recommended maximum continuous exposure times to loud sounds.

Sound Intensity	Recommended Maximum Continuous Exposure Time
85 dB	8.0 h
88 dB	4.0 h
91 dB	2 h
94 dB	1.0 h
97 dB	30.0 min
100 dB	15.0 min
103 dB	7.5 min
106 dB	3.75 min
109 dB	1.875 min
112 dB	0.9375 min
115 dB	0.46875 min

- a) Consider your answers to the chapter problems in the previous sections. Explain why the relationship between sound intensity and exposure time is exponential.
- b) Write a paragraph describing how continued exposure to loud sounds could affect hearing loss. Use the words "exponential relation" and "continuous exposure" in your answer.
- **7.** Atmospheric pressure depends on the altitude above sea level. Altitude is measured in kilopascals (kPa).

Altitude (km)	Atmospheric Pressure (kPa)
0	101.3
1	89.4
2	78.9
3	69.7
4	61.5
5	54.3
6	47.9
7	42.3
8	37.3
9	32.9
10	29.1

- **a**) Use graphing technology to create a scatter plot of the data.
- **b**) Find an equation that models the data using exponential regression.
- **c)** What is the atmospheric pressure at sea level?
- **d)** At how many metres above sea level will a mountain climber experience atmospheric pressure of 89 kPa?
- e) What is the atmospheric pressure 4250 m above sea level?

Chapter 7 Practice Test • MHR 417